Hardware-oriented Ant Colony Optimization Considering Intensification and Diversification
نویسنده
چکیده
Swarm intelligence is the technological modeling of behaviors of social insects, such as the ant or the honeybee. Although each element comprising swarm intelligence is simple, high grade intelligence emerges when the elements gather to form a swarm. Ant Colony Optimization (Dorigo, M, et al., 1997), which is called ACO, is one of the swarm intelligence and has been attracting much attention recently. The ACO represents a general name of the algorithm inspired by feeding behavior of ants. It has been applied to various combinatorial optimization problems (Ramkumar, A.S. et al., 2006), including the travelling salesman problem (TSP), the floorplanning problem (Luo, R., et al., 2007) and the scheduling problem (Sankar, S.S., et al., 2005). The basic model of the ACO is the ant system (AS) that was proposed by Dorigo et al. (1996), and many ACOs applied to TSP are based on the AS. However, these ACOs require a lot of calculation time, because the optimization process is based on repetitive searches by plural numbers of ants. In this chapter, a novel hardware-oriented ACO (H-ACO) is proposed to achieve high-speed optimization based on mechanism of ACO algorithm. The characteristics of the H-ACO is as follows: (1) all calculations can be performed with only addition, subtraction, and shift operation, instead of the floating point arithmetic and power calculation which are adopted in conventional ACO; (2) a new technique using Look-Up-Table (LUT) is introduced; and (3) in addition to upper and lower limits, benchmarks are set to the pheromone amount. Experiments using benchmark data prove effectiveness of the proposed algorithm. The organization of this chapter is as follows: Section 2 describes the search mechanism of ACO and briefly surveys the ACO research in terms of the computational time. Section 3 explains H-ACO. Section 4 reports the results of computer simulations applied to travelling salesman problem. Section 5 summarizes the chapter.
منابع مشابه
A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization
Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updatin...
متن کاملSelf-evolving Ant Colony Optimization and Its Application to Traveling Salesman Problem
Ant colony optimization (ACO) algorithms are a recently developed, population-based approach which has been successfully applied to combinatorial optimization problems. However, in the ACO algorithms, it is difficult to adjust the balance between intensification and diversification and thus the performance is not always very well. In this paper we proposed an improved ACO algorithm in which a s...
متن کاملAnt Colony Optimization with Genetic Operation and Its Application to Traveling Salesman Problem
Ant colony optimization (ACO) algorithms are a recently developed, population-based approach which has been successfully applied to optimization problems. However, in the ACO algorithms it is difficult to adjust the balance between intensification and diversification and thus the performance is not always very well. In this work, we propose an improved ACO algorithm in which some of ants can ev...
متن کاملMultiobjective memetic algorithms for time and space assembly line balancing
This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. These three proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy randomised search procedure. Different variants of these memetic algorithms have been developed and c...
متن کاملAn Effective Hybrid Ant Colony Optimization for Permutation Flow-Shop Scheduling
This paper proposes a hybrid ant colony optimization algorithm to solve the permutation flow-shop scheduling (PFS). The hybridization of ant colony optimization (ACO) with path relinking (PR), which combines the advantages of two individual algorithms, is the key innovative aspect of the approach. Path relinking (PR) can be interpreted as an evolutionary method where the high quality solutions ...
متن کامل